

On the non-canonical structure of keratin-derived antimicrobial peptides (KAMPs) from molecular dynamics simulations

Panagiotis Panagopoulos Papageorgiou,¹ Katerina S. Karadima,¹ Ioanna Papageorgiou,¹ Vlasis G. Mavrantzas^{1,2}

¹Department of Chemical Engineering, University of Patras, Patras GR-26504, Greece

²Department of Mechanical and Process Engineering, ETH Zürich, Zürich CH-8092, Switzerland

1. Introduction

- The rise of antimicrobial resistance (AMR), due to the misuse of currently available antimicrobials and lack of novel antibiotics discovery,² has challenged the capabilities of modern healthcare infrastructure.¹
- Antimicrobial peptides (AMPs) have gained significant traction as an alternative class of therapeutics due to their selective cytotoxicity against microorganisms and slower development of AMR.³

2. AMPs of interest

- KAMPs: Derived from human cytokeratin 6A of corneal epithelial cells. Active against both gram-negative (*Pseudomonas aeruginosa*) and gram-positive bacteria (*Streptococcus pyogenes*).⁵⁻⁷
 - Pw-Antibac12₃: Derived from chicken feather lysates. Active against gram-positive, multi-drug resistant Staphylococcus aureus.⁸

Peptide	Sequence	# of residues	Net charge	\sim
KAMP-10	GGLSSVGGGS	10	0	
KAMP-10G2A	GALSSVGAGS	10	0	\int
KAMP-18C	R ⁺ AIGGGLSSVGGGSSTIK ⁺	18	+2	
KAMP-18N	AIGGGLSSVGGGSSTIK*Y	18	+1	ng) >
KAMP-19	R ⁺ AIGGGLSSVGGGSSTIK ⁺ Y	19	+2	
KAMP-19scr	IR+GSVTISGYSGGLK+GSAG	19	+2	
KAMP-36	YGSGLGVGGGFSSSSGR*AIGGGLSSVGGGSSTIK*YT	36	+2	Dw-Antibac12
Pw-Antibac12 ₃	CNE ⁻ PCVR ⁺ QCQD ⁻ SR ⁺ VVIQPSPVVVTLPGPILSSFPQNTAVGSSTSA	45	0	r w-Antibaciz ₃

The structure, size, and charge⁴ of AMPs directly influence their mechanism of action against cell membranes. However, little is known about their structure, conformation, aggregation, and especially antimicrobial activity mechanism.

5. Secondary structure distributions

CNEPC5VRQCQ10DSRVV15IQPSP20VVVTL25PGPIL30SSFPQ35NTAVG40SSTSA

Figure 1. Secondary structure of KAMP-36 (a,b) and Pw-Antibac12₃ (c,d), in dilute (a,c) and semi-dilute (b,d) conditions.

The dominant secondary structure is non-canonical

3. Scope

- Determine the secondary structure of KAMPs and Pw-Antibac12₃ in dilute aqueous solutions using detailed molecular simulations (MD).
- Compare predicted results with experimental data and models available in the literature.
- Examine the effect of peptide concentration on their conformation.
- Elucidate the dynamics and mechanism of their self-aggregation.
- Elucidate the role of amino acid side chain
- composition in the aggregation mechanism.

4. Simulation protocol

to the post

Generation of initial configurations using PEP-FOLD3 and CHARMM-GUI

Energy minimization

- Thermal equilibration (NVT Ensemble for
- solutions, NVT + NPT for membranes) Production MD runs (NPT Ensemble)

GROMACS

•••

- CHARMM36 FF
- T = 310.15 K P = 1 atm
- <u>Peptide mass fractions</u>: 0.2% w/w (dilute conditions), 5% w/w (semi-dilute conditions)

6. Aggregation dynamics

Initial configuration of KAMP-36 under semi-dilute conditions. Water and ions have been omitted.

- Low helical content for KAMPs in dilute conditions (< 3%).⁵
- Aggregation promotes α -helical content. Formation of *β*-bridges which stabilize the clusters.

8. Interactions of KAMPs with model bacterial membranes

Modeling of both gram-positive (POPE:POPG = 1:3) and gram-negative (POPE:POPG = 3:1) membranes.

1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG)

- Use of most promising KAMPs (KAMP-10 and KAMP-18C).⁵⁻⁷
- Large scale simulations (2 μ s for each system).
- Peptide-to-lipid ratio (P/L) = 1:30.
- No spontaneous pore formation observed yet.

- Since the spontaneous pore formation by KAMPs needs long times to be observed, we have constructed systems with pre-assembled pores to assess their stability in time.
- Systems with KAMPs embedded into the membrane have also been constructed to observe their diffusion and aggregation in the membrane's hydrophobic environment.
- Also, incorporation of a peptidoglycan layer⁹ to render the model system more realistic.

Figure 3. Contact map for KAMP-36.

High density of phenylalanine-valine and arginine-tyrosine contacts.

7. Contact maps

To gain insights into the interactions within the biggest cluster, we have calculated the number of inter-peptide contacts per residue.

- At each time frame, the biggest cluster and the peptides that constitute it are identified.
- Using a geometric criterion (cutoff of 0.35 nm) for the centers of mass, we calculate the inter-residue distance between all possible residue pairs in the

biggest cluster.

Pre-assembled pore comprised of 8 KAMP-18C molecules. 28 more peptides have been placed above the membrane.

Diffusion of KAMPs (red) through the peptidoglycan mesh (blue).

Grid of 36 KAMP-18C molecules initially embedded into the membrane.

Chemistry plays an essential role in aggregation propensity.

9. Conclusions

- Confirmation of non-canonical structure and low helical content of KAMPs that was first documented by Tam et al.⁵
- MD-predicted structure of Pw-Antibac12₃ agrees with the molecular model of Paul et al.⁸
- Aggregation depends heavily on peptide amino-acid sequence and chemistry.
 - Hydrogen bonding patterns determine the stability of the cluster (evident by the formation of β -structures during aggregation).
- Aromatic residues (phenylalanine & tyrosine) form more intermolecular contacts than smaller ones (glycine, serine, and valine).

10. Future work

- Study of other KAMPs with respect to their aggregation dynamics and membrane interactions.
- Incorporate the peptidoglycan layer model provided by Pokhrel et al.⁹ above the gram-positive membrane.
- Elucidate the effect of temperature on pore stability.

11. Acknowledgements

- This work is supported by the RELIANCE project (grant agreement) No. 101058570).
- The Greek Research & Technology Network (GRNET) for granting computational time at the national HPC facility (ARIS).

